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1.0
INTRODUCTION

An FRC formation experiment could provide a test bed for ionization kinetics models since
neutral species can propagate easily across field lines, but ionized species can not. Thus, the
depth of penetration of the ionized species, as identified by spectral methods, is a useful

diagnostic for determining the validity of such models.

This report describes work by NumerEx to simulate the formation of an FRC using MACH2. The
goal was only to demonstrate the capability of doing the simulations, not to simulate any actual
experimental configuration. Some very general details of a possible experimental configuration
were inferred from the proposal: “Magnetized Target Fusion - A Proof-of-principle Research
Proposal” by K.F. Shoenberg and R.E. Siemon [LA-UR-98-2413]. This proposal describes an
experimental program to investigate the feasibility of Magnetized Target Fusion (MTF) by liner
implosion of an FRC target. The first phase of this project, the formation of the FRC, will be
carried out at Los Alamos National Laboratory. MACH?2 is the primary tool used for MHD
simulation at AFRL; however, the traditional kinds of problems for which MACH2 is well adapted
to solving do not include inductively-driven formation schemes of the type that will be used for
the FRC. NumerEx has completed work on adapting the code to solve this new class of
problems. Section IT will briefly describe the modifications that were made to MACH?2 and
explain how its capabilities have been extended. Section III will show some preliminary results
from simulations of FRC formation based on a sample configuration created to roughly match

the examples shown in the above mentioned proposal.

2.0
CODE MODIFICATIONS

It has been difficult to simulate configurations where the plasma current is driven inductively by
time-varying externally applied vacuum fields with MACH2. The problem manifests itself in the
vacuum region between the plasma and the applied field. If the vacuum region is modeled as

high resistivity plasma, the magnetic field solver may diverge there, but if the resistivity is not




set high enough then the electric field cannot penetrate into the plasma where it is needed to

drive the current.

The problem was solved by rewriting the diffusion solver to use the flux function, y = rAy, in

place of the in-plane components of the magnetic field. These field components are then defined

in terms of the flux function by taking the curl:

B=VxA,=Vyx8/r (0.1)
with the unit vector in the out-of-plane direction. Hence, the field diffusion equation

%—1: =-VxnVxB 0.2)

is replaced by the flux diffusion equation

_a_lli =gr’V-rivy. 0.3)
ot
This has two important advantages. First, since the resistivity only appears outside the

differential operator, it can be divided out, leading to

o %‘;’— =PV r VY 0.4)

Since only the conductivity need be specified, it can be set equal to zero in the vacuum region,
making the resistivity infinite there. This is the equation that the new code solves with a fully
implicit Euler step. The conjugate gradient method is used to solve the implicit equations. The
multi-grid solvers used elsewhere in the code might be more efficient but they are too complex to

have been rewritten in the time allowed for this project.

The second important advantage of using the flux function is that the magnetic field is
automatically divergence free because it is defined as the curl of a vector potential. This

property can be reproduced in the numerical equations if the finite volume difference operators

satisfy div(curl)=0. The original operators in MACH2 did not satisfy this exactly, but it was found




that they could be made to do so, by changing the geometry coefficients from which they are
computed. The version of the code used for the simulations described here maintains div(B)=0
exactly. An explanation of how this is done will be written up and submitted for publication at a

later time.

The Lagrangian hydro step in MACH2 does not have to be altered because that step must conserve
flux on physical grounds; hence, the flux function does not change across it. This observation
makes it possible to retain the implicit hydro step and its stabilizing iteration on the magnetic
field, yet discard the resulting magnetic field in favor of the flux function at the beginning of the

iteration. The magnetic field advection is then replaced by advection of the flux function itself.

MACH2 now has the capability of simulating problems with any kind of time-varying vacuum
field and can do pure vacuum field diffusion calculations of the type that were formerly done

using the D code’.

3.0
SIMULATION RESULTS

Magnetic Fields The formation scheme simulation uses a 20 cm long, 6 cm radius main field
coil and two 5 cm long, 6 cm radius cusp coils at each end of the main coil, but separated from it
by 5 cm long insulating gaps. The configuration is symmetric about the mid-plane and only the
left half is shown in all the plots. The simulation included the complete device and both halves
remained symmetric. The flux in each coil is specified as a function of time to be a linear ramp
up to 3 us and constant thereafter. This corresponds to a square wave voltage pulse lasting 3 pus.
Of course, any waveform could have been specified, or the external circuit could have been
specified and the voltage computed self-consistently. The flux scheme does not permit direct
specification of the current in the coils. Rather, it must be determined from the simulation by
integration. The flux values are set so that the initial reversed bias field is -4.7 kG and it swings
to +33 kG in 3 ps (with no FRC present—it is higher with the FRC because the same flux is

compressed into a smaller area). The cusp field starts at 5.6 kG and swings to 40 kG in the same



3 ps. The cusp field is always slightly higher than the main field to confine the FRC. Figure 1
shows the coil geometry and the initial bias field. The dimensions are in meters. The right edge
of the plot is the mid-plane and the left edge is one end. Symmetry boundary conditions are used

for the field at the ends.
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Figure 1.  Flux Plot Showing Initial Bias Field at t = 0.

Physical Model The physical model consists of magnetic diffusion, magnetohydrodynamics,
anisotropic thermal diffusion, and radiation cooling by emission. Mass is allowed to flow out
through the ends and the single-temperature energy equation includes Ohmic heating, radiation

losses and anisotropic thermal conduction with thermal boundaries treated as heat sinks held at 1

eV. The initial mass density is 2x107°kg/m’ of deuterium for most of the runs described here.

This corresponds to an initial ion number density of 6.7x10"”cm™. One run uses half this value

and another uses a quarter. The initial temperature is always 1 eV.

Anomalous Restivity Spitzer resistivity is never adequate for this type of simulation because it
invariably leads to hot, highly conducting vacuum regions which prevent electric fields from
diffusing into the plasma. Some type of anomalous resistivity model is needed to prevent low
density regions from becoming highly conductive. Unfortunately, the state of the art in
anomalous resistivity theory has not developed to the point where any particular model is known
to be applicable to a given situation. The only guidance available is to look for past experiments

where some empirical information may have been acquired. Past FRC experiments at LANL

! DT—A Magnetic Diffusion Code with Ohmic Heating and Thermal Conduction for Arbitrary




have shown that the Chodura model with empirically determined parameters has led to some
agreement with simulation? so this model, with their parameters, was used for this simulation.
Three runs were done using this model, with three different initial densities. One run was also

done using the lower hybrid model with MACH2’s default parameters and one run was done with

Spitzer, but with the Ohmic heating turned off in regions with density less then 5x10"‘cm™.

Discussion and Conclusions Figures 2 through 11 are flux and number density contour plots

showing the time evolution of an FRC formation simulation using the Chodura model with initial

density n;= 6.7x10".

The contour line that goes to r =0 is ¢ = 0, and the region it encloses to the lower right has
negative flux values. Note that the flux contour interval is much smaller for negative values than
for positive. Other simulations with the different anomalous resistivity models and the different

initial densities look very similar with only slight differences in the size of the FRC.

0.5 microseconds

0.06
3
004 . ]
gg: 13 1.0E-03 zE 1.40E+22
T 9 0.0E+00 9.74E+21
0.02 5 -2.2E-04 W 5.46E+21
0'0(13 1 -44E-04 1.19E+21

Figure 2.  Flux and Density Plots at t = 0.5 us for the Chodura Model with n; = 6.7x10%.
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Figure 3.  Flux and Density Plots at t = 1.0 us for the Chodura Model with n; = 6.7x10".
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Figure 4. Flux and Density Plots at t = 1.5 ps for the Chodura Model with n; = 6.7x10".
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Figure 5.  Flux and DensityPlots at t = 2.0 ps for the Chodura Model with n;= 6.7x10".




Figure 6.
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Figure 8.
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Flux and Density Plots at t = 2.5 us for the Chodura Model with n; = 6.7x10"%.
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Flux and Density Plots at t = 3.0 ps for the Chodura Model with n; = 6.7x10".
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Flux and Density Plots at t = 3.5 us for the Chodura Model with n;= 6.7x10"%.
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Figure 9.  Flux and Density Plots at t = 4.0 us for the Chodura Model with n; = 6.7x10".
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Figure 10. Flux and Density Plots at t = 4.5 s for the Chodura Model with n; = 6.7x10".
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Figure 11. Flux and Density Plots at t = 5.0 us for the Chodura Model with n; = 6.7x10%.

There are significant differences, however, in the peak densities and in the temperatures. Figures
12, 13 and 14 show results from the three different anomalous resistivity models at 3 us.
Compare the Ohmic-cutoff model in Figure 12 to the Chodura in Figure 14 and notice the

smaller size and 60% higher density. Figure 13 shows the lower hybrid model at 3 pis; compare




this to Figure 14 and notice the intermediate size and density. The dependence of the density on
the choice of anomalous resistivity model is most clearly seen in Figure 15 which shows a time
history of the peak density in the three different models. Note the differences in the equilibrium
density levels after 3 ps and the collapse in density after 8 us for the Chodura model only. These

variations limit the confidence that can be placed on any density prediction.

No Anomalous Resistivity. No Ohmic Heating below 5 x 10%.
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Figure 12. Flux and Density Plots at t = 3.0 us for the Ohmic-cutoff model with n;=
6.7x10".

Lower Hybrid Drift Anomalous Resistivity
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Figure 13. Flux and Density Plots at t = 3.0 ps for the Lower Hybrid Model with
n; = 6.7x10".



n,=6.7 x 10*' m*® with Chodura
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Figure 14. Flux and Density Plots at t = 3.0 us for the Chodura Model with n; = 6.7x10%.
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Figure 15. Peak density Time Histories for Three Anomalous Resistivity Models, All with

ng = 6.7x10".
Figures 16 and 17 show results at 3 us from runs using the Chodura model with different initial
density. They look very similar except for a slightly smaller size for the lower densities. Figure

18 shows the time history of the peak density in these three cases. The ratios of the equilibrium




densities follow the ratios of the initial values but the density collapse occurs much sooner at the

lower densities. The physics of this density collapse has not been investigated.
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Figure 16. Flux and Density Plots at t = 3.0 ps for the Chodura Model with n; = 3.3x10",

n,=1.7 x 10°' m*® with Chodura
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Figure 17. Flux and Density Plots at t = 3.0 us for the Chodura Model with n; = 1.7x10"%,
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Figure 18. Peak Density Time Histories for the Chodura Model, n;= 6.7x10%, 3.3x10",
1.7x10%.

Figures 19, 20 and 21 show temperature plots for each of the three different anomalous
resistivity models, all with the same initial density. They are all about the same in the FRC
interior, ranging from around 200 eV for the Chodura and lower hybrid models, down to 150 eV

for the Ohmic-cutoff model.
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No Anomalous Resistivity. No Ohmic Heating below 5 x 10%.
3.0 microseconds
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Figure 19. Temperature Plot at t = 3.0 ps for the Ohmic-Cutoff Model with n; = 6.7x10%.

Lower Hybrid Drift Anomalous Resistivity
3.0 microseconds

te
2.26E+02

e 1.75E+02

1.25E+02
W 7.51E+01
2.50E+01

Figure 20. Temperature Plot at t = 3.0 us for the Lower Hybrid Model with n;= 6.7x10".
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Figure 21. Temperature Plot at t = 3.0 ps for the Chodura Model with n;= 6.7x10".

Figures 21, 22 and 23 show temperature plots for the Chodura model at three different initial
densities. The temperature of the FRC increases by about the same ratio as the density drops:

200 eV to 400 eV to 800 eV. This makes the pressure about the same for each case, which it

13



must be because in equilibrium it is balanced by the magnetic field pressure, which is the same.
The hottest FRC decays the fastest — because of the density dependence in the anomalous
resistivity — if these results can be believed. The question of whether this anomalous resistivity

will be applicable to any experiment cannot be answered until the experiment is carried out.
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Figure 22. Temperature Plot at t = 3.0 ps for the Chodura Model with n; = 3.3x10%.
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Figure 23. Temperature Plot at t = 3.0 us for the Chodura Model with n;= 1.7x10%,
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4.0
CONCLUSION

Simulations of FRC formation experiments can now be performed using the 2!2-dimensional
magnetohydrodynamic code MACH2. This report describes the modifications to the code
employed and simulations performed to test the model that explore three different anomalous
resistivity models and three different initial densities for one of those models. The maximum
density and temperature depend weakly on the resistivity model, and strongly on the initial

density.
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